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High-resolution biophysical 
analysis of the dynamics of 
nucleosome formation
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We describe a biophysical approach that enables changes in the structure of DNA to be followed 
during nucleosome formation in in vitro reconstitution with either the canonical “Widom” sequence 
or a judiciously mutated sequence. The rapid non-perturbing photochemical analysis presented 
here provides ‘snapshots’ of the DNA configuration at any given moment in time during nucleosome 
formation under a very broad range of reaction conditions. Changes in DNA photochemical reactivity 
upon protein binding are interpreted as being mainly induced by alterations in individual base pair roll 
angles. The results strengthen the importance of the role of an initial (H3/H4)2 histone tetramer-DNA 
interaction and highlight the modulation of this early event by the DNA sequence. (H3/H4)2 binding 
precedes and dictates subsequent H2A/H2B-DNA interactions, which are less affected by the DNA 
sequence, leading to the final octameric nucleosome. Overall, our results provide a novel, exciting way 
to investigate those biophysical properties of DNA that constitute a crucial component in nucleosome 
formation and stabilization.

Gene expression is essentially controlled through the spatial and temporal distribution of nucleosomes on the 
genome. The presence of a nucleosome generally has an inhibitory effect on DNA binding proteins; indeed the 
binding of TATA binding protein and the whole pol II transcription machinery requires the absence of nucle-
osomes. There is much debate concerning the differential contribution of various factors such as sequence, 
remodellers and transcription factors to nucleosome positioning1,2 although in essence the central question con-
cerns those molecular mechanisms that are involved in nucleosome formation, stabilisation and destabilisation.

Originally DNA condensation may have been initiated by wrapping of DNA around prototype histones using 
positioning parameters inherent in the DNA sequence. With the advent of the role of nucleosome shuffling medi-
ated by chromatin remodellers in gene regulation the requirement for strong positioning signals may have been 
attenuated. A consequence of this idea is that the search in vivo for strong positioning sequences in modern 
genomes may be fruitless. However it is of considerable interest to try to determine the biophysical parameters of 
DNA that initiate nucleosome positioning and that probably served in primordial nucleosome binding.

Nucleosomes are formed by histone octamers consisting of two heterodimers H2A/H2B and one tetramer, 
(H3/H4)2 wrapping ~145/147 base pairs of DNA ~1.7 times around them in a left-handed supercoil with an aver-
age radius of curvature of 9 nm. The way in which a DNA sequence can intrinsically and specifically modulate its 
malleability and thus variations in the shape of the double-helix, is thought to be an essential factor in nucleosome 
formation3–6.

Ground breaking studies to identify SELEX-generated DNA sequences that possessed advantageous parame-
ters for nucleosome formation7,8 lead to the suggestion of a positional code for nucleosome positioning and paved 
the way for crystallographic studies on reconstituted nucleosomes that provided remarkable insights in particular 
into the bound DNA shape4,9,10 and DNA-histone interface11.

Of note however, is that in none of these seminal works is the atomic structure of free DNA studied. Indeed, 
because of their length, the detailed structures of free 145/147bp DNAs cannot be revealed by traditional 
approaches such as X-ray diffraction or NMR. This hampered the comparison between free and bound DNAs, 
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and thus the changes induced upon histone binding remained elusive as well as the mechanism of nucleosome 
formation and the exact nature of positional signals.

In this context, we have applied an approach developed in our group12 based on the measurement of the prob-
ability of UV induced cyclobutane dimer formation between adjacent pyrimidines (Y-Y dimer) on the same DNA 
chain12. This technique of photochemical analysis of structural transitions (PhAST), was applied to naked and 
bound DNA as a probe of changes in local base structure not only between naked DNA and reconstituted nucle-
osomes but also at different stages of nucleosome formation. UV induced Y-Y dimer formation has already been 
used to probe nucleosome core structure either by looking at the periodicity of photoproducts13 or by correlating 
the rate of Y-Y dimer formation with the degree of, and direction of, bending in nucleosomes14. The location of 
Y-Y dimers and intensities of photo-induced modifications are themselves affected by external agents that reshape 
the DNA structure and thus alter the photochemistry. However the incident UV light is in no way hampered by 
the presence of for example a protein. So it has to be borne in mind that although PhAST is not a footprinting 
technique, as for example in the case of DNase I or micrococcal nuclease, and thus does not give a precise idea 
of the contact area of a protein with the DNA, it provides unique information on the local DNA structure at a 
base level. We reveal photochemical products using a simple primer extension technique coupled to capillary 
electrophoresis. This confers high-resolution, excellent quantification, application in vitro and in vivo, and the 
possibility of high-throughput since practically any size DNA sample may be analysed in a fashion analogous to 
genome sequencing.

X-ray derived DNA structures containing a thymine-thymine dimer show that the formation of two C5-C5 
and C6-C6 covalent bonds is characterized by marked positive rolls (~ + 20°, see Supplementary Fig. 1) and low 
twists (~25°)15. At a very simple level, the probability of inducing Y-Y dimer formation may be therefore mod-
ulated by the local architecture of naked DNA, in particular the roll and twist angles. The roll angle measures 
the rotation between two successive base-pair planes about their long axis (y-axis); the roll is positive when it 
opens up on the minor groove side of the bases, decreasing the distance between the two C5 or C6 atoms of 
successive pyrimidines. In both naked and bound DNA16,17 positive rolls are generally associated with low twist, 
thus minimizing the rotation between two successive base-pair planes about the z-axis and hence reinforcing the 
proximity between two successive bases. One would thus expect that maximal and minimal probabilities of Y-Y 
dimer formation are indicative of intrinsic positive roll/low twist and negative roll/high twist respectively, in the 
targeted DNA.

In the nucleosome, examination of the high-resolution X-ray structures confirmed that roll and twist are 
correlated4. Here, we chose to focus on the roll parameter to interpret the measured probabilities of Y-Y dimer 
formation in free and nucleosomal DNA. Indeed, this parameter is the major player accounting for DNA cur-
vature in the nucleosome4. In addition, roll values show a spectacular periodicity along the nucleosome DNA, 
clearly less accentuated in the case of twist9. Of course, if no change in Y-Y dimer formation is observed this does 
not necessarily mean that the roll angles are not affected, Y-Y dimer formation could also be dependent on other 
factors; in fact, alterations in local flexibility will also affect the time-averaged probability of trapping a suitable 
Y-Y structure for Y-Y dimer formation. However, on the whole, for reasons that will be discussed in more detail 
below we interpret changes in Y-Y dimer formation as being indicative of alterations in roll angles. Accordingly, a 
decrease in probabilities of Y-Y dimer formation can be produced for three roll angle couples of free/bound DNA: 
i) positive to negative rolls ii) positive to less positive rolls and iii) negative to more negative rolls. An increase in 
probability of Y-Y dimer formation also relates to three roll angle couples, substituting negative rolls by positive 
rolls, negative to less negative rolls and positive to more positive rolls.

In an attempt to understand ab initio nucleosome formation at a given sequence from a dynamic point of view, 
we follow structural changes occurring at the base pair level in DNA, as nucleosomes are formed in vitro under 
decreasing ionic strength conditions. Despite the lack of corresponding DNA sequences in vivo, the possibilities 
of some bias in the selection process, and the arguments against the existence per se of positioning sequences  
in vivo advanced above, we used the “Widom” 601 sequence with the idea that its high affinity for the histones is 
due to a concentration of intrinsic structural properties favouring nucleosome formation. In addition, we consid-
ered a mutant sequence (601.2.4) designed to attenuate the putative positioning sequences of the 601 sequence.

Our results provide the first dynamic analysis of nucleosome formation that indicates, in agreement with 
recent data on nucleosome unwrapping18, that sequence dependent intrinsic properties of DNA strongly impact 
on nucleosome stability and, more specifically, on the recruitment of (H3/H4)2 that is the first stage of nucle-
osome formation in vitro. This first stage, that serves as a point of nucleation of DNA bending and defines 
the dyad axis, is thus critical for determining nucleosome positioning subsequent to H2A/H2B recruitment. 
Moreover, we propose that hydrophobic interactions could play a non-negligible role in the initial recognition 
by (H3/H4)2. Ultimately, we discuss the existence of positioning sequences in modern genomes and of putative 
signals persisting from ancient mechanisms of DNA compaction, and which are maintained during the first stage 
of nucleosome formation.

Results
Reconstitution of nucleosomes. Linear DNA fragments containing the 601 sequence (Supplementary 
Fig. 2a) and a mutated sequence (Supplementary Fig. 2b) were reconstituted separately with full length octam-
ers (H2A/H2B/H3/H4)2, H2A/H2B dimers and (H3/H4)2 tetramers as described in Material and Methods. The 
mutated 601.2.4 sequence contains changes at putative positioning regions in the 5′  half of the 601 sequence, 
of particular interest for nucleosome stability19–21. Putative positioning motifs were identified from analyses of 
nucleosomal sequences -comprising artificial sequences such as the 601 sequence-, and consist of alternating 
T:A rich segments, preferentially situated at inward facing narrow minor grooves, and of G:C or TG.CA rich seg-
ments, occurring preferentially at outward wide minor grooves (for reviews see)22,23 likely because the 2-amino 
group of guanine sterically hinders narrowing of the minor groove24. In the mutant 601.2.4, the positions of base 
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changes were largely designed to hinder the extreme narrowing of the minor groove where it faces the histone 
octamer. AGC, GTG and AGC were thus introduced at SHLs − 3.5, − 5.5 and − 6.5, respectively. For the same 
purpose, TTGAT at SHL − 1.5 replaced TTAAA, which is deemed crucial for nucleosome stability9,21,25,26. Other 
changes (C-> A at SHL − 1.0, CA-> AT at SHL − 2.2/− 2.1, CC-> TT at SHL − 6.3/− 6.2) could potentially shift 
the phasing of sequences favouring narrowing of the minor groove.

Micrococcal nuclease (MNase) digestion of reconstituted objects and naked DNA followed by fluorescent 
end labelled primer extension and capillary electrophoresis (described in Material and Methods) gave profiles 
shown in Supplementary Fig. 3. Fragments were generated using Taq polymerase expansion of 5′  end labelled 
6-FAM fluorescent primers and extension was terminated at the cleaved base. Fragment size determination was 
determined using capillary electrophoresis. Calibration with known size markers allowed single base resolution 
identification of cleavage sites and calculation of the relative intensity of peaks as a function of the sequence 
position and thus calculation of the frequency of cleavage at each base. For the histone octamer reconstitution 
the MNase footprint extended from ~ − 70 to + 70 around the dyad axis (Supplementary Fig. 3(1)a). The MNase 
footprint of the 601 fragment reconstituted with (H3/H4)2 showed a shorter footprint from ~ − 30 to + 40 with 
respect to the dyad axis (Supplementary Fig. 3(1)b) whereas reconstitution with H2A/H2B dimers produced no 
MNase footprint (Supplementary Fig. 3(1)c).

On reconstituted mutant 601 fragments (601.2.4) containing the histone octamer, MNase digestion produced 
footprints after reconstitution (Supplementary Fig. 3(2)) that although identically positioned were apparently 
weaker than those seen on 601 fragments (enlarged central footprint in Supplementary Fig. 4). This was equally 
true for MNase digestion of fragments reconstituted with (H3/H4)2. No footprints were observed for MNase 
digestion of mutant fragments reconstituted with the H2A/H2B dimers. The weaker footprints seen on the 
mutant fragment could be due to two reasons; either there is a mixed population of bound and unbound DNA or 
even if the majority of DNA is involved in a complex, these are more dynamic and therefore more accessible to 
MNase digestion. We believe that the latter is the case for arguments that will be developed later.

UV Photochemical analysis of structural transition (PhAST). Laser UV radiation of DNA alone or in 
reconstituted DNA was carried out as described in Material and Methods and following primer extension of flu-
orescent end labelled oligonucleotides separation of the ensuing fragments provided the patterns shown in Fig. 1.

On DNA alone, on both the 601 and the mutant sequences the overwhelming majority of termination points 
preceded the potential presence of a Y-Y dimer (Fig. 1(1) red curve and1(2) red curve). Photo-irradiation of 
DNA reconstituted with octamers showed an altered pattern of photo-reactivity (Fig. 1(1) blue curve and 1(2) 
blue curve). Changes in photo-reactivity occurred only on the 601 and mutant sequences and not beyond into 
the 5′  and 3′  extensions; the primers extended from − 224 to 226 for the 601 sequence and − 236 to 205 for the 
mutant, with respect to the dyad axis. However we did not examine extensively sequences across the whole plas-
mid outside of these boundaries, and it is indeed likely that nucleosomes are also being formed elsewhere. Where 
nucleosomes are shown to be present there are changes in photo-reactivity that do not occur in adjacent regions 
where no micrococcal nuclease footprint is observed, thus photochemical changes are reserved for those regions 
where a nucleosome has been formed. Peak size was normalised by reference to peaks within the footprint of the 
nucleosome that had not altered following reconstitution of nucleosomes compared to naked DNA as described 
in the legend to Fig. 1. We also compared changes using peaks outside of the footprint of the putative nucleosome 
that did not change after reconstitution and obtained exactly the same profiles (data not shown) so for clarity we 
used comparisons with unchanged peaks within the footprint. Dramatic changes in peak intensities occurred at 
many specific positions on the DNA sequence when reconstitution was carried out with DNA either in the pres-
ence of (H3/H4)2 tetramer and H2A/H2B dimers (Fig. 1(1)a and 1(2)a) or in the presence of (H3/H4)2 tetramer 
alone (Fig. 1(1)b and 1(2)b). No significant differences were seen when either DNA sequence was reconstituted 
with H2A/H2B dimers alone (data not shown). From the data presented in Fig. 1 and coherent with the data 
from the MNase footprinting (Supplementary Fig. 3) it is clear that the 601 and mutant sequences are involved 
in a nucleoprotein complex. In both cases there are very specific Y-Y steps that undergo significant differences in 
photo reactivity in nucleosomes compared to naked DNA. Particularly important are changes at positions − 15 
and + 15 with respect to the dyad axis, which correspond to outsized photo reactivities of TT steps in naked DNA 
(Fig. 1). These steps belong to TTAAA elements that, in their free state, are characterized by atypical features, 
comprising a very narrow minor groove20 associated with marked positive rolls and low twists27. As pointed out 
in the Introduction, such a local structure promotes Y-Y dimer formation by decreasing the distance between 
the two C5 or C6 atoms. According to our analysis of the crystallographic structures of nucleosome containing 
TTAAA elements, the TT steps have average roll and twist of − 4.5 ±  5° and 37.5 ±  3° respectively, which are 
much less favourable to the dimer formation. Thus, the enhanced changes obtained here at positions − 15 and  
+15 are likely representative of an induced transition from a particularly photo-reactive structure towards a more 
refractive conformation.

In order to fully appreciate the differences and to escape the limitations imposed by the quantum yield of 
specific pyrimidine base steps, a presentation taking the log2 of the signal intensity ratios of each peak between 
reconstituted DNA and naked DNA as a function of super helical location (SHL, which refers to the periodic 
orientation of the DNA major and minor grooves with the histone core28. SHLs ± 0.5, ± 1.5, ± 2.5 etc. indicate the 
locations where the DNA minor groove is oriented towards the histone core) was chosen to present the results, 
as shown in Fig. 2. In this representation Y-Y dimers occurring between Yn and Yn−1 are taken as being at posi-
tion SHLn. The advantage of this representation is that a more global appreciation of changes is seen rather than 
just the predominant specific changes seen for example at − 15 and + 15 with respect to the dyad axis shown in 
Fig. 1. As several PhAST experiments were performed on each of the different systems, a change was considered 
as significant, and discussed only, when the mean of the log2 quantity is superior to the corresponding standard 
deviation.
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Changes in the probability of Y-Y dimer formation upon octamer binding. The 601 and mutant 
sequences of 147bp inserted in plasmids differ by 15 bases all located in the 5′  half, spread from SHL-7 to SHL 
− 1 (Supplementary Fig. 2). This difference led to a gain of 2 Y-Y steps in the mutant 601.2.4 sequence (72 Y-Y) 
compared to the 601 sequence (70 Y-Y) between SHL − 7.3 and the centre (SHL 0). Furthermore the location of 
several Y-Y steps changes (Supplementary Fig. 2). Thus the mutant sequence gains 4 Y-Y steps between SHL − 2.5 
and SHL − 0.5 compared to the 601 sequence (Supplementary Fig. 2).

In both sequences, 62% of the Y-Y steps, distributed along the whole DNA length, show significant changes 
in probabilities of Y-Y dimer formation between reconstituted and naked DNA (Fig. 2). Thus histones alter the 
structural characteristics of most naked YY steps along the whole occupied DNA sequence. Furthermore, taking 
into account the sequence differences, changes are identical in the 601 and mutant sequences, in terms of location 
and direction of the change i.e. an increase or decrease.

Figure 1. (1) Primer extension then capillary electrophoresis after photo-irradiation of 601 fragments (a) 
histone (H3/H4)2 tetramers and H2A/H2B dimers, (b) only (H3/H4)2 tetramers. (2) 601.2.4 fragments. (a) 
histone (H3/H4)2 tetramers and H2A/H2B dimers, (b) only (H3/H4)2 tetramers. Red lines show DNA alone, 
blue lines show reconstituted DNA. Peak size was normalized by reference peaks indicated by asterisks; the same 
set of peaks was used for all normalisation in all the photochemical change analysis. Closed diamonds indicate 
the positions of Y-Y steps on the 601 and 601.2.4 sequences.
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A comparison between the data of Fig. 2(1)a and 2(2)a shows that the amplitudes of the signals observed 
in the 5′  half of the mutant sequence from SHL − 3.5 to SHL − 1.5 decreased by up to 30% compared to the 
601 sequence. One explanation for weaker MNase footprints (Supplementary Fig. 3) is that there is a mixed 
population of bound and unbound DNA. Were this the case, and bearing in mind that PhAST is not a footprint-
ing technique but is reporting local changes in DNA structure then the distribution of photo reactive changes 
would be homogenous. This is not observed. The photo reactivity represents a (relatively rapid, of the order of ns)  
time-averaged representation of the whole population. These results suggest that in nucleosomes involving the 

Figure 2. Log2 of the intensity ratios of the peak height for Y-Y dimer peaks for reconstituted DNA compared 
with naked DNA with (1) 601 fragments and (a) histone (H3/H4)2 tetramer and H2A/H2B dimers, (b) only 
(H3/H4)2 tetramer. Changes in the ratio at each base step on both strands are shown. As additional information, 
(c) shows the DNA residues involved in the interface with H3, H4, H2A and H2B, and, just below, the location 
of pyrimidine-pyrimidine (YY) steps. (2) 601.2.4 fragments and (a) histone (H3/H4)2 tetramer and H2A/H2B 
dimers, (b) only (H3/H4)2 tetramer. Note that the y-ranges of panels (a) and (b) differ. Minor-groove inward 
facing regions observed in the nucleosome crystal structures are represented by grey boxes.
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mutant sequence, the left hand side of the dyad axis is less rigidly constrained structurally than in the 601 con-
taining nucleosomes.

In accordance with the assumptions concerning the correlation between changes in roll angles and the 
probability of Y-Y dimer formation as explained in the introduction, an interpretation of the difference 
photo-reactivities shown in Fig. 2 ideally requires a comparison of the rolls in naked and reconstituted DNA. 
Because of their length, naked nucleosomal sequences cannot be studied by classical approaches providing atomic 
models, such as X-ray diffraction or NMR. Thus, the structures of naked 601 and mutant sequences are unknown. 
However, crystallographic structures of nucleosomes offer the opportunity to examine potential relationships 
between the rolls in bound DNA and the changes in probability of Y-Y dimer formation observed between naked 
DNA and DNA reconstituted with the histone octamer. Among the available structures of nucleosomes contain-
ing the 601 sequence, we chose to analyse those structures obtained at the highest resolution, namely, 3MVD 
(resolution 2.9 Å)29, 3LZ0 and 3LZ1 (resolution 2.5 Å)25, in order to limit uncertainties in particular regarding the 
side chains rotamers.

Most decreases in probability of Y-Y dimer formation between naked DNA and reconstituted DNA of both 
601 and mutant sequences correspond to negative roll regions in nucleosomes (Fig. 3). In the nucleosome, neg-
ative rolls occur in regions in which the minor groove faces and interacts with the histone core9; a reasonable 
assumption is that the structure of the dinucleotide steps involved in the interaction interface is stabilised and 
their thermal fluctuations reduced. Such constrained negative rolls could thus systematically disfavour Y-Y dimer 
formation. Positive roll regions, which interact much less with the histone core, are likely less constrained than 
the negative roll regions. This could explain why relatively few pyrimidine-pyrimidine steps with positive roll in 
nucleosomes correspond to an increase in probability of Y-Y dimer formation (Fig. 3).

In summary, our PhAST approach unambiguously reflects the DNA conformation in nucleosomes formed 
by both 601 and mutant sequences and also confirms that protein-DNA interactions tend to be weakened by the 
mutations introduced in the 5′  half of the 601 sequence21. The differences observed between the probabilities of 
Y-Y dimer formation in naked and reconstituted DNA reveal most SHLs of negative rolls in nucleosomes - apart 
from the SHL − 0.5 region that does not contain a suitable Y-Y step. This relationship together with the large num-
ber of changes in the probability of Y-Y dimer formation suggests that the local structure and dynamics of naked 
601 and mutant sequences are modified in the nucleosome, at least for Y-Y steps.

Probability of Y-Y dimer formation upon (H3/H4)2 binding and the DNA-(H3/H4)2 interface.  
As for the histone octamer, the binding of (H3/H4)2 generates differences in probabilities of Y-Y dimer formation 
between naked and reconstituted 601 (Fig. 2(1)b and mutant 2(2)b) sequences. These differential photo-reactive 
patterns are expected to be due to (H3/H4)2 binding and thus, they were examined in relation to the DNA-protein 
interface in the crystallographic structures of nucleosome containing 601 sequence, 3MVD, 3LZ0 and 3LZ1 (see 
Supplementary data for methodological details). Note that this interface reports only those contacts between the 
DNA and the structured histone core; the histone tails not being resolved in the structures considered.

As shown in Fig. 2(1)c, the interface between the DNA and the structured part of (H3/H4)2 is concentrated in 
the central part of the DNA (from SHL− 3.3 to SHL + 3.3), with additional H3 contacts with the 5′  (from SHL −  7 
to SHL − 6.4) and 3′  (from SHL + 6.4 to SHL + 7) ends of the DNA.

Figure 3. Roll angles in X-ray structures of nucleosomes and changes in probabilities of Y-Y dimer formation 
upon histone octamer binding. The periodic variations of roll values along the DNA in nucleosomes are 
represented with a black line, using a natural smoothing spline approximation. These roll values were calculated 
and averaged on three X-ray structures of nucleosomes containing the 601 sequence (PDB codes 3LZ0, 3LZ1 
and 3MVD). The rolls of the pyrimidine-pyrimidine steps that correspond to decreases and increases in 
probability of Y-Y dimer formation obtained by comparing DNA bound to the histone octamer and naked 
DNA are represented by vertical blue and red bars, respectively. The remaining pyrimidine-pyrimidine steps for 
which no change was observed are positioned by vertical green bars. 
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The differential photo-reactivity pattern of 601 sequences with (H3/H4)2 (Fig. 2(1)b) compared to the octamer 
equivalents (Fig. 2(1)a) is quite revealing.

The number and the nature, decreases or increases, of the changes occurring in the central region contacted 
by (H3/H4)2 in the full nucleosome, from SHL − 3.3 to SHL + 3.3, are the same on the DNA reconstituted with 
the octamer or (H3/H4)2. The intensity of almost all the peaks in the reconstituted tetramer decreased com-
pared to that for the reconstituted octamer. This could be due to lack of H2A/H2B interactions with the tetramer 
that would stabilise the complex; this will be discussed more in the light of data shown later. Nevertheless the 
photo-reactivity at specific positions was significantly different between the octamer and the tetramer. At SHL  
+ 0.7 the increased negative log2 intensity ratio of 0.4 for the octamer increases to 1.4 for the tetramer corre-
sponding to a lower probability of Y-Y dimer formation at this position with the tetramer. At SHL + 0.8 the neg-
ative intensity ratio decreased from 2.9 in the octamer to 0.6 in the tetramer. These two positions are where the 
most significant changes occur in this region but in fact SHLs from + 0.5 to + 0.8 are involved. These observations 
imply that this region in the H3/H4 tetramer complex is distorted differently from the same region in the octamer 
complex. Indeed, a careful examination of the X-ray structures of nucleosome reveals that a large part of the 
C-terminal domain of H2A bridges the α 1 and α 3 helices of H3 near the points where H3 contacts the DNA. This 
interaction between H2A and H3 could induce subtle changes in the orientation of H3 with respect to the DNA 
leading to a conformational DNA response different from that occurring in absence of H2A.

On the 5′  side of this central region, of particular interest are the series of significant changes, which are 
observed in the presence of H3/H4 but which are outside of the expected interface. Compared to the octamer 
differential photo-footprint, most of these signals are clearly weakened and indeed two of them are inverted at 
SHL − 4.4 and − 4.2. Additional inversions occur on the outermost 5′  half, around SHL − 6.5. On the 3′  half of 
the 601 sequence, for SHL > + 3.3, changes are also produced by H3/H4, with only one inversion at SHL +  3.4. 
Globally, these signals are however marginal compared to those observed on the 5′  half with the notable exception 
of a strong decrease just beyond SHL + 6.5.

(H3/H4)2 bound to mutant sequences also provokes differential photo-reactivity, but the intensities of changes 
are very weak (Fig. 2(2)b). The most intense peaks are observed in the central region, as for the 601 sequence 
however their intensities remain largely inferior to those of both octamer-mutant (Fig. 2(2)a) and (H3/H4)2-601 
(Fig. 2(1)b) complexes. A comparison of the differential photo-reactivities of the 601 (Fig. 2(1)b) and mutant 
(Fig. 2(2)b) sequences with (H3/H4)2 regardless of the differences in intensities of changes, shows that they are in 
fact very similar, suggesting common interaction events.

These observations strongly suggest that, even in the absence of H2A and H2B, the centre of the 601 sequence 
is a preferential site for binding of H3/H4. The presence of marked changes in the 5′  half of the sequence could 
designate this region as a secondary, less propitious (H3/H4)2 binding site. Another possibility is that, at the same 
time where the (H3/H4)2 is located in the central DNA part, the unbound 5′  region is involved in some form of 
interaction with H3. Indeed the large patch of positively charged amino acids of H3 that is engaged in contacts 
with the DNA ends in the native nucleosome could transitorily capture the DNA, inducing structural distortions 
even in the absence of H2A and H2B. Strikingly however, a comparison of photo-reactive change intensities in the 
5′  and 3′  halves indicates asymmetric properties in the 601 sequences, with respect to the final dyad axis. Finally, 
the comparison of the effects of (H3/H4)2 reconstitution on the two DNA sequences demonstrates that the muta-
tions in the 5′  half of the 601 sequence severely reduce the global ability of the mutant sequence to interact with 
(H3/H4)2.

Probability of Y-Y dimer formation during the nucleosome reconstitution process. The whole 
process of nucleosome formation is a dynamic process. Although the experimental reconstitution requires a 
change in ionic strength that would apparently obstruct a kinetic analysis of this process, advantages of the PhAST 
technique are that it is independent of the reaction conditions (e.g. salt concentration) and is extremely rapid; the 
induced photochemistry occurs over a time scale (5 ns) that is too short to interfere with the DNA structure. The 
approach can thus be used to get ‘snapshots’ of DNA conformation during nucleosome formation. We therefore 
looked at the probability of Y-Y dimer formation as a function of ionic strength during the reconstitution process.

PhAST was carried out on samples at each dilution step during the reconstitution process (Fig. 4) and again 
in order to correctly assess the progression of changes at each position, the log2 of the intensity ratios of the peak 
height for Y-Y dimer peaks at a specific ionic strength compared to the peak height of the DNA alone is shown 
as a function of SHL. This allows an appreciation of the evolution of signals through the changing conditions.

As seen in Fig. 4(1)a the photo-reactivity pattern of the 601 sequence at 1.5 M NaCl compared to naked DNA 
testifies to numerous changes. Marked effects are located between SHL − 3.5 and SHL + 2.5 (Fig. 4(1)a), com-
mensurate with the formation of interactions between (H3/H4)2 and the central part of the 601 sequence. More 
specifically, the intensities of the signals on the 5′  side of the dyad (around SHLs − 3.5 and − 2.5) are similar to 
those observed with the octamer at low ionic strength (Fig. 2(1)a). This 5′  DNA part thus appears as a strong 
anchoring region for initialising nucleosome reconstitution. Additional weak but significant signals outside the 
centre likely correspond to the beginning of the recruitment of H2A and H2B (Fig. 4(1)a), it should be borne in 
mind that at 100 mM NaCl the (H3/H4)2:H2A/H2B dimer interface was shown to be not stable in the absence 
of DNA30 and that under these conditions H2A/H2B dimers transfer to (H3/H4)2 when these latter are bound 
to DNA31. Upon transfer to 1.0 M NaCl changes at SHL − 4.5 appear more clearly in the region of H2A and H2B 
core binding (Fig. 4(1)b).

At the 3′  side of the dyad, changes from SHL + 1.5 to SHL + 4.5 are compatible with adjustments of H3/H4 and 
the expansion of H2A and H2B influence (Fig. 4(1)b). Changes at SHLs ± 4.5 are particularly interesting because 
these regions are also contacted by the H2B N-terminal tail. According to the only X-ray nucleosome structure in 
which the histone tails were observed (PDB ID 1KX511) H2B tails pass through the DNA gyres, contacting SHLs 
− 2.5 and + 4.5 and, symmetrically, SHLs + 2.5 and − 4.5 thus bridging the DNA gyres. Our data reinforces this 
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image showing the events as they take place during reconstitution. In decreasing ionic strength conditions signals 
first appear at SHL − 2.5 then at + 4.5 and + 2.5, + 4.5 continues to evolve with the signal at − 4.5 appearing.

At 0.5 M NaCl, the photo-reactivity pattern at SHL < − 3.5 and SHL > + 3.5 suggests the reinforced presence 
of H2A and H2B and, importantly, the involvement of the 5′  and 3′  DNA ends in the interface with H3 and H2A 
(Fig. 4(1)c). At this stage, all of the rearrangements along the whole sequence have taken place and their intensity 
suggests a large population of reconstituted nucleosomes. Indeed the only appreciable difference seen at 0.25 M 
NaCl is the intensity of the signals around SHLs − 6.5, − 5 and + 6 attesting to completion of the superhelical 
pathway around the nucleosome.

The situation for the mutant sequence at 1.5 M NaCl differs remarkably from the 601 sequence. Very weak photo-
chemical changes are observed (Fig. 4(2)a), the most significant being clustered in the vicinity of the dyad axis. This 
confirms that the mutations in the 5′  part of the centre of the 601 sequence are sufficient to disfavour the (H3/H4)2  
interaction, as pointed out above by comparing the 601 and mutant sequences in the presence of (H3/H4)2  
during reconstitution and at low ionic strength. From 1.0 M NaCl and concentrations below (Fig. 4(2)b–d) the 
evolution of differential photo-reactivity resembles that which is observed with the 601 sequence (Fig. 4(1)b–d), 
taking into account the differences between the two sequences. A curious point with the mutant sequence is the 
noticeable increase at SHL + 6.9 at 1.5 M NaCl that becomes a decrease at 1 M NaCl and then almost disappears 
while clearly discernible at low ionic strength (Fig. 2(1)b). Within the limits of the accuracy of the photochemical 
probe, this could be interpreted as being due to an enhanced dynamics of the DNA 3′  end during nucleosome 
reconstitution.

These results provide a scenario to describe the succession of events during nucleosome reconstitution. With 
the 601 sequence, early events occur even at high salt (1.5 M NaCl), and involve in particular (H3/H4)2 binding to 
the DNA centre, to a greater extent on the 5′  side of the dyad axis. As the ionic strength is progressively dropped to 
0.5 M NaCl, H2A/H2B docking occurs, first on the 3′  DNA side and then symmetrically with regard to the dyad 
axis. This H2A/H2B positioning is concomitant with the development of contacts involving the extreme ends 
of the 601 sequence, which are definitively stabilized at 0.25 M NaCl. With the mutant sequence, the first step is 
much more attenuated. Reconstitution really starts at 1 M NaCl, with the interaction of (H3/H4)2 at the central 
region of the DNA and one H2A/H2B dimer with the 3′  neighbouring region. Indeed, from 1.0 to 0.25 M NaCl, 
the succession of events remarkably parallels that which is observed with the 601 sequence. Consequently, muta-
tion of the six bases between SHL − 3.5 and SHL 0 creates a much more dramatic effect on reconstitution than 
mutation of the nine bases located between SHL − 7 and SHL − 3.5. This observation implies that the sequence of 
the central DNA part is crucial for optimizing nucleosome formation.

Figure 4. Snapshots during nucleosome reconstitution in (1) the 601 sequence and (2) the 601.2.4 sequence. 
The histograms represent Log2 of the intensity ratios of the peak height for Y-Y dimer peaks for reconstituted 
DNA with histone (H3/H4)2 tetramer and H2A/H2B dimer compared with naked DNA at (a) 1.5 M NaCl, 
(b) 1.0 M NaCl, (c) 0.5 M NaCl and (d) 0.25 M NaCl buffer during the salt dilution process. Error bars derive 
from SD of three separate experiments. (e) DNA regions involved in the interface with the structured part of 
each histone in the complete nucleosome.
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Probability of Y-Y dimer formation during the (H3/H4)2 tetramer reconstitution process. A similar  
analysis was carried out for reconstitution with (H3/H4)2 and the results are shown in Fig. 5.

On the 601 sequence with (H3/H4)2 at 1.5 M NaCl (Fig. 5(1)a), the signals around the dyad axis are simi-
lar, albeit much less pronounced than with the octamer at the same ionic strength (Fig. 4(1)a). Between SHL 
− 3.3 and SHL + 3.3, the difference between the intensities of changes induced by H3/H4 (Fig. 5(1)a) and the 
octamer (Fig. 4(1)a) is in fact greater at 1.5 M than at low ionic strength (Fig. 2(1)b vs. 2(1)a). In addition to their 
global weakness, there is no asymmetric pattern between the 5′  and the 3′  sides around the dyad as seen with 
the octamer (Fig. 4(1)a). Furthermore, the pattern obtained with (H3/H4)2 at 1.5 M NaCl contains five inverted 
peaks (decrease ↔  increase at SHLs − 4.2, − 1.7, + 5, + 3.4 and + 6.9) compared to those observed at 0.25 M NaCl 
(Fig. 5(1)d) or low ionic strength (Fig. 2(1)b). These inversions are not induced at the same ionic strength in the 
presence of the octamer (Fig. 4(1)a). Effects due to the presence of H2A/H2B on the DNA were weakly discerni-
ble during the first stage of octamer reconstitution (Fig. 4(1)a).

Indeed no direct effect of H2A/H2B on DNA was detected even at the lowest salt concentrations, the implica-
tion is that H2A/H2B interactions with the DNA necessitates the presence of the tetramer.

However, these results coupled to those seen in Fig. 5(1)a strengthen the idea that, at 1.5 M NaCl and in the 
presence of the four histone types, H2A and H2B help position H3/H4 at the DNA centre.

With decreasing salt (Fig. 5(1)b–d) the differential photo-footprinting patterns on the 601 sequence with  
(H3/H4)2 becomes more and more similar to those seen for (H3/H4)2 at low ionic strength (Fig. 2(1)b).

The situation on the mutant sequence with respect to the (H3/H4)2 tetramer reconstitution is shown in Fig. 5(2). 
The differential photo-reactivity pattern at 1.5 M NaCl does not contain any significant change (Fig. 5(2)a),  
unsurprisingly given the results presented in the above sections with regard to this sequence. At 1 M NaCl, several 
changes occur in the central region of DNA (Fig. 5(2)b). No significant signal is observed outside the centre, 
contrary to the pattern obtained at the same ionic strength and on the same sequence but in the presence of the 
four histone types. Of interest is that the most evident changes are located at the 3′  side of the dyad and this clearly 
shows that the 5′  side mutations strongly disfavour interactions with H3/H4. Indeed, the situation is stabilised 
only at 0.25 M NaCl, when a close similarity with the pattern obtained at low ionic strength is finally observed 
(Fig. 2(2)b).

These results reinforce the interpretation of the development of events during octamer reconstitution. They 
suggest that, with both 601 and the mutant sequences, H3/H4 are the first histones involved in nucleosome for-
mation, interacting essentially (and asymmetrically with a penchant at the 601 sequence for the 5′  end) at the 
dyad axis but need to be assisted by H2A and H2B, even if these latter were not observed by us to interact alone 
with the DNA. In addition when we compare Figs 4 and 5 with the 601 sequence we clearly see that the influence 
of H2A/H2B on the Y-Y dimer signal is concentrated between SHL − 3.5 and − 2.5 and also on the 3′  side but to 
less extent. This would confirm that H2A/H2B is assisting the tetramer to bind to the DNA only subsequent to 

Figure 5. Snapshots during nucleosome reconstitution with histone (H3/H4)2 tetramer in (1) the 601 sequence 
and (2) the 601.2.4 sequence. The histogram represents log2 of the intensity ratios of the peak height for Y-Y 
dimer peaks at a specific ionic strength for reconstituted DNA compared with free DNA. (a) Peak height ratio 
of DNA alone to reconstituted DNA in 1.5 M (a), 1.0 M (b), 0.5 M (c) and 0.25 M (d) NaCl buffer during the 
salt dilution process. Error bars derive from SD of three separate experiments. (e) DNA regions involved in the 
interface with the structured part of each histone in the complete nucleosome. Note that the y-ranges of panels 
(1) and (2) differ.
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events creating the signal coming exclusively from the dimer/DNA interaction that appears at SHL − 7 and − 3.5 
and same on the other side. This therefore confirms that the dimer interacts first with the tetramer helping it to 
bind and interact and then the dimer interacts directly with the DNA. In addition the binding of the tetramer 
alone or the tetramer and dimer at the centre of the 601 sequence must bend the DNA so the dimer can grab the 
DNA and fix it to stabilise the final nucleosome structure.

Discussion
We have used UV laser induced PhAST of DNA to study nucleosomes formed with two DNA fragments, the 601 
and mutant 601.2.4 sequences, which differ by only 15 base pairs concentrated in the 5′  left hand side of the dyad 
axis. Nucleosome reconstitution using octamers or (H3/H4)2 produced complexes having the expected MNase 
footprint on the 601 and mutant fragments centred on the dyad axis (Supplementary Fig. 3).

The photo-reactivity patterns seen following laser UV irradiation of the DNA alone or after reconstitution 
with the octamer (Fig. 1) concern all pyrimidine-pyrimidine steps (70 in the 601 sequence and 72 in the mutant 
sequence) and provide rich information on distortions and histone binding along the DNA sequences. As shown 
in Fig. 3, there is a clear correlation between roll angles in the nucleosome and changes in the probability of Y-Y 
dimer formation.

The numerous changes observed along the two sequences as exemplified by Fig. 2a and their interpretation in 
terms of rolls are meaningful for the mechanism underlying nucleosome formation. The implication is that most 
rolls in free DNA are not suitable to nucleosome formation. Since roll, twist and slide are globally coupled in free 
and bound DNA comprising nucleosomes4,16,32 it can reasonably be inferred that these characteristics of dinucle-
otides in free 601 and mutant sequences are not paramount in aiding DNA readout and increasing histone affinity. 
This assumption, already formulated from the examination of an ensemble of crystallographic nucleosome struc-
tures33 is also compatible with a recent experimental study of free DNAs related to the 601 sequence supporting 
the notion that nucleosome formation is more favoured by pre-adapted minor grooves than by parameters such 
as roll or twist20.

The reconstruction with (H3/H4)2 produces photo-reactivity patterns (Fig. 2b) in the central DNA region 
that correspond well with the interface between these histones and DNA (Fig. 2). With the 601 sequence, for the 
first time, changes are also observed throughout the 5′  half including regions that do not interact with H3 and 
H4 in the complete nucleosome (Fig. 2). However, these distortions are not identical to those observed in the 
nucleosome. The 5′  half of the 601 sequence is hence especially attractive for H3/H4, likely with several possible 
secondary binding sites. Overall, the analysis of nucleosome reconstructions using octamers and (H3/H4)2 shows 
that the interactions are weakened by mutations introduced in the 5′  half of the 601 sequence.

Changes in DNA structure during nucleosome formation were monitored as a function of the ionic strength 
(Figs 4 and 5); this was possible because of the unique advantages of the PhAST approach. Using the octamer and 
the 601 sequence at 1.5 and 1.0 M NaCl, the changes immediately around the dyad axis are the signature of initial 
binding of (H3/H4)2, in line with earlier experiments34,35 that established that (H3/H4)2 initiates nucleosome 
formation. However, the asymmetry in changes in intensities shows that the strongest interactions occur imme-
diately 5′  of the dyad axis in agreement with other studies19. This asymmetry is not due to some interference with 
H2A and H2B, since it is also clearly observable during the reconstitution with only H3/H4.

Several studies suggested that electrostatic components, especially at SHL ±  1.5, are fundamental for 
nucleosome formation28,36,37. However, at 1.5 M NaCl, the electrostatic contacts and consequently the related 
DNA-histone interactions would be expected to be strongly weakened37. That robust interactions occur at high 
ionic strength was previously discussed in the context of a salt-induced DNA-histone dissociation study showing 
that salt stability increased with the G:C content21. However, at this point we would like to develop the idea that 
the nature of contacts made during indirect readout is not purely electrostatic but has a strong hydrophobic com-
ponent. Hydrophobic interactions involving deoxyribose moieties were previously examined on a large dataset of 
DNA-protein complexes38 and explicitly mentioned in studies of crystallographic DNA-histone interfaces9–11,28. 
Our analysis of DNA-protein interfaces of five nucleosome structures (see Table 1 and Material and Methods for 
more details) shows that the number of DNA residues (in fact, mainly sugars) involved in hydrophobic interac-
tions is larger with H3 and H4 than with H2A and H2B, and, importantly, independent of the DNA sequence. 
We would therefore suggest that the substantial hydrophobic component of the interface involving (H3/H4)2, 
complements the weakened electrostatic action and plays a role in anchoring of (H3/H4)2 at high ionic strength, 
without excluding other potential factors such as ionic contacts.

Coming back to the asymmetric behaviour of the 5′  and 3′  sides of the dyad, we propose that the 5′  side of 
the dyad of the 601 sequence takes advantage of the favourable periodicity in flexibility39 and preformed groove 
shape20. At the 3′  side of the dyad, these parameters are weaker20,39 and, to compensate this deficit, the complex 
requires lower ionic strength (1.0 M) to be stabilized. More specifically, the differential behaviour of the 5′  and 
3′  sides of the 601 sequence could also be related to TpA steps, deemed to easily accommodate histone-induced 
DNA distortions. Indeed, the 5′  side contains four TpA that coincide with points of maximal pressure in the 
nucleosome while the 3′  side includes only one TpA10,21 .

The situation with the mutant sequence (Fig. 4(2)) can be described by a similar logic. Here in the presence 
of the octamer or (H3/H4)2 the pattern on both sides of the dyad is quite symmetrical at 1.5 and 1.0 M NaCl, 
with major changes occurring only at 1.0 M (Figs 4(2) and 5(2)). The 5′ -side is clearly less efficient for recruiting 
H3/H4 in the mutant sequence than in the 601 sequence. Only six base pairs differ between SHL-3 and SHL-1.0 
(CTAGCACCGCTTAAACGCAC in 601, CTGGATCCGCTTGATCGAAC in the mutant), which alter in par-
ticular the TTAAA element (underlined), a strong point for anchoring H3/H410,25,30,34. In the mutant region, the 
favourable structural properties20,37 of the free TTAAA element are weakened and, in addition, the alternation of 
flexible and stiff elements detectable in the 601 sequence is lost. Such effects would be sufficient to affect the ease 
of recognition.
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Importantly, the favourable characteristics of the 5′  side of the 601 sequence seem to enhance interactions 
involving the 3′  side, typical of a cooperative process. When these characteristics are modified, as in the 5′  side 
of the mutant sequence, the interactions between the 3′  side and H3/H4 are also compromised (Fig. 4(2)). This 
scenario is consistent with results obtained with the 601 and mutant sequences in the presence of only (H3/H4)2 
(Fig. 2(1)b,(2)b), with changes in intensities much higher for the 601 sequence than for the mutant sequence.

A study of free energies measured with histone octamer and (H3/H4)2 tetramer concluded that interactions 
with (H3/H4)2 dominate nucleosome positioning8. The same study highlighted the remarkable conservation of 
the DNA region involved in the H3/H4 contacts in artificial sequences selected for their maximal ability to form 
nucleosomes. Here, instead of two independent experiments, our approach allows to simultaneously demonstrate 
that the first stage of reconstitution involves recognition by (H3/H4)2 and is strongly modulated by the DNA 
sequence. We also suggest that a series of cooperative interactions, during and after these initial interactions, 
allows successive binding and bending of the DNA. Our results also help to precise the notion of dyad axis. The 
dyad axis location initially derives from the crystallographic structures, compatible with the centre of the “foot-
print” of the octamer. However we believe that this location is simply a consequence of H3/H4 binding and is not 
per se a determining factor.

The results described in the present work suggest a simple general model for nucleosome formation. An initial 
readout mechanism involves narrow minor grooves that interact with positive arginine side chains of (H3/H4)2  
due not only to electrostatic contacts but also to substantial hydrophobic contacts between the aliphatic side 
chains of amino acids and DNA carbon atoms in sugars and bases. An initial complex is thus stabilized in which 
narrow minor grooves are already oriented towards the (H3/H4)2 core. This binding by (H3/H4)2 induces 
changes, in a word bending, of the DNA; the formation of this first complex is extremely sensitive to the DNA 
sequence and ultimately defines the position of the final dyad axis. The final complex is obtained through the 
binding of H2A and H2B, which seems to be less dependent on the DNA sequence and is guided by interactions 
with (H3/H4)2 already bound to the DNA, and distortions induced in the DNA by (H3/H4)2. Small rearrange-
ments notably at the ends of the DNA sequence then lead to a final stable complex.

In conclusion we believe that positional sequences per se probably no longer exist in their original form since 
their role has essentially been superseded by the need to regulate by repositioning using remodelling mechanisms. 
However we suggest that residual positional signals persist in regions involved in the crucial first step correspond-
ing to the (H3/H4)2 recruitment. Thus, the interpretation of large data from extensive mappings of nucleosome 
positioning would need to focus on windows of 70 bp, approximately the DNA length covered by (H3/H4)2 
rather than the whole length of nucleosome DNA, incorporating the periodicity of intrinsic DNA flexibility at the 
dinucleotide level with respect to structural changes that promote or are compatible to bends towards the minor 
groove. Indeed in Caserta et al.40 a 51 bp window was used. We note that in vivo if the DNA sequence in the (H3/
H4)2 binding region is insufficient for positioning this can, in principle, be compensated by rotational sequence 
determinants in the H2A/H2B binding regions. The latter would increase affinity. Such an effect would be consist-
ent with the previously reported patterns of nucleosomal DNA sequence periodicities40–42. We further note that 
these parameters become subordinate to other criteria in subsequent rearrangements of nucleosome positioning 
carried out by extraneous factors such as remodelers, transcription/replication machinery and so forth, but that 
these parameters still play a major role in moderating such effectors.

Finally the PhAST approach outlined here describes a novel, precise and subtle technique that introduces 
new elements into the current paradigm for the definition of nucleosome positioning and suggests new means of 
studying and understanding chromatin organisation at a dynamic and molecular level.

Material and Methods
DNA Preparation. Plasmids containing a 601 fragment (pGEM3Z-601) were kind gifts from Dr. David 
Bensimon at the Ecole Normale Supérieure de Paris. To prepare linearized DNA, the plasmid was digested with 

3MVD 3LZ0 3LZ1 3UT9 1KX3 NAV SD(NAV)

Contacts with (H3)2

NTotal 45 44 41 44 37 42.2 3.3
Nhydrophobic 16 19 20 15 19 17.8 2.2

% Nhydrophobic 0.36 0.43 0.49 0.34 0.51 0.4 0.1

Contacts with (H4)2

NTotal 14 17 15 18 13 15.4 2.1
Nhydrophobic 7 6 3 8 8 6.4 2.1

% Nhydrophobic 0.50 0.35 0.20 0.44 0.61 0.4 0.2

Contacts with (H2A)2

NTotal 30 28 29 26 21 26.8 3.6
Nhydrophobic 8 6 6 6 6 6.4 0.9

% Nhydrophobic 0.27 0.21 0.21 0.23 0.28 0.2 0.1

Contacts with (H2B)2

NTotal 25 22 22 24 19 22.4 2.3
Nhydrophobic 7 2 4 6 7 5.2 2.2

% Nhydrophobic 0.28 0.09 0.18 0.25 0.37 0.2 0.1

Table 1.  This table summarizes the interface analysis of five X-ray structures of nucleosome referred by their 
PDB codes. It reports the number of DNA residues involved in DNA-protein contacts, regardless of the type 
of contact (Ntotal), and the number of DNA residues specifically engaged in hydrophobic contacts (Nhydrophobic). 
%Nhydrophobic is the percentage of DNA residues specifically engaged in hydrophobic contacts (Nhydrophobic/Ntotal). 
The last two columns give the average values and standard deviations of Ntotal, Nhydrophobic and %Nhydrophobic.
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PvuII (New England BioLabs), which digests both ends of the 601 sequence (Supplementary Fig. 2a), and then 
purified by phenol-chloroform extraction and ethanol precipitation. A similar process was carried out for the 
601.2.4 sequence (Supplementary Fig. 2b). Both sequences are shown in Supplementary Fig. 2c.

Nucleosome reconstitution. Nucleosomes were reconstituted with the salt dilution protocol provided by 
New England BioLabs with a slight modification; Human recombinant histone H2A/H2B dimer (1.5 µ g) and/or  
histone (H3/H4)2 tetramer (1.5 µ g) (New England BioLabs) were mixed with the linearized DNA (3 µ g) in 
10 µ l of 2 M NaCl, The mixture was incubated at room temperature for 30 min before the salt concentration 
was lowered to 100 mM by adding dilution buffer (10 mM Tris-Cl, pH 7.5, 1 mM EDTA, 0.05% NP-40, 5 mM 
2-mercaptoethanol, 0.1 mM PMSF) five times every 20 min. Nucleosome solutions (DNA concentration, 10 ng/µ l)  
were concentrated to ~50 ng/µ l of DNA concentration using a MultiScreen Ultracel-10 filter plate (Millipore).

Partial MNase digestion. 25 µ l of reconstituted nucleosomes or DNA alone were digested with 1 mU/ml of 
MNase from Staphylococcus aureus (Sigma-Aldrich) for 15 min at 37 °C in the presence of 5 mM CaCl2. To stop 
the reaction, 2.5 µ l of 500 mM EDTA was added and the DNA was purified by phenol-chloroform extraction and 
ethanol precipitation.

Photochemical Analysis of Structural Transitions (PhAST). 20 µ l of the reconstituted nucleosomes or 
DNA alone (DNA concentration, ~50 ng/µ l) were placed in 0.5 ml Eppendorf tubes and irradiated with 5-ns-long 
pulses of 266 nm UV laser beam at a frequency of 10 Hz for a period of 1 sec as described in12 After irradiation, 
DNA fragments were purified by phenol-chloroform extraction and ethanol precipitation.

Primer extension and capillary electrophoresis. The sites of the UV photoproducts and the MNase  
digestion were analyzed by single-cycle primer extension using Taq DNA polymerase (New England BioLabs).  
Two primers (Primer A: 5′ -GCTATGACCATGATTACGCCAAGC-3′ , Primer B: 5′ - AGGGTTTTCCCAG 
TCACGACGTT-3′ ) with 6-FAM labelling at 5′  end were used for the UV irradiated samples to analyze both 
strands of the 601 and 601.2.4 sequences. For the samples digested by MNase, the labeled primer A and primer B 
was used for the 601 and 601.2.4 sequences, respectively. Primer positions are shown in Supplementary Fig. 2. For 
the extension, 200–500 ng of the UV irradiated or the MNase digested DNA were added with 20 µ l of final volume 
of an amplification mixture containing 0.2 mM of each dNTP, 0.2 µ M of the end-labeled primer, and 0.025 units/µ l  
of Taq polymerase in Taq standard buffer (New England BioLabs). The samples were then denatured for 5 min at 
95 °C and subjected to extension (1 min at 55 °C for primer annealing and 8 min at 72 °C for extension) in a ther-
mal cycler. After the primer extension reaction, the products were collected by ethanol precipitation. The samples 
were re-suspended in 10 µ l of deionized formamide containing 0.25 µ l of the GeneScan-600 LIZ internal size 
standard (Applied Biosystems) and separated by a capillary electrophoresis instrument (3500 genetic analyser, 
Applied Biosystems).

Analysis of DNA-protein interface. The DNA-protein interface of nucleosome structures were analysed 
with PDidb43 that allows the identification of DNA and protein residues in contact and to precise the type of con-
tact, hydrogen bond, ionic bond, hydrophobic interaction or simple proximity between atoms. This analysis was 
carried out using a drastic distance cut-off of 4 Å. In other words, two residues are considered in contact if they are 
distant of 4 Å or less. In practice this cut-off eliminates potential water mediated hydrogen bonds, which cannot 
be ascertained in X-ray structures with restricted number of resolved water molecules. Such analysis therefore 
reports only the closest contacts between DNA and proteins. Five X-ray structures of nucleosome were consid-
ered; their PDB codes are 3MVD, 3LZ0, 3LZ1, 3UT9 and 1KX3. 3MVD, 3LZ0 and 3LZ1 contain the 601 sequence 
and 3UT9 is formed with the 601L sequence, the palindromic derivative of the 5′ part of the 601 sequence. 1KX3 
contains the human a-satellite sequence that largely differs from the 601 sequence (49% of identity). This struc-
ture enabled to ensure that the DNA-protein contacts do not crucially depend on the DNA sequence. Indeed, the 
analysis showed a remarkable coherence between the contacts observed in the five structures (Table 1).

We would like to point out that substantial parts of histone tails are not resolved in these structures. Hence, the 
interface analysis only accounts for the contacts between the DNA and the structured histone core, which are yet 
largely dominant in the interface constitution11.
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