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The fibronectin type III (FN3) monobody domain is a
promising non-antibody scaffold, which features a less complex
architecture than an antibody while maintaining analogous
binding loops. We previously developed FN3Con, a hyperstable
monobody derivative with diagnostic and therapeutic poten-
tial. Prestabilization of the scaffold mitigates the stability–
function trade-off commonly associated with evolving a
protein domain toward biological activity. Here, we aimed to
examine if the FN3Con monobody could take on antibody-like
binding to therapeutic targets, while retaining its extreme
stability. We targeted the first of the Adnectin derivative of
monobodies to reach clinical trials, which was engineered by
directed evolution for binding to the therapeutic target
VEGFR2; however, this function was gained at the expense of
large losses in thermostability and increased oligomerization.
In order to mitigate these losses, we grafted the binding loops
from Adnectin-anti-VEGFR2 (CT-322) onto the prestabilized
FN3Con scaffold to produce a domain that successfully
bound with high affinity to the therapeutic target VEGFR2.
This FN3Con-anti-VEGFR2 construct also maintains high
thermostability, including remarkable long-term stability,
retaining binding activity after 2 years of storage at 36 �C.
Further investigations into buffer excipients doubled the
presence of monomeric monobody in accelerated stability
trials. These data suggest that loop grafting onto a prestabilized
scaffold is a viable strategy for the development of monobody
domains with desirable biophysical characteristics and that
FN3Con is therefore well-suited to applications such as the
evolution of multiple paratopes or shelf-stable diagnostics and
therapeutics.

Developing a small, simple protein domain that includes a
similar sized binding region to antibody complementarity
determining regions (CDRs) is a successful strategy for
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overcoming the complexity of antibody structure. Non-anti-
body scaffolds are single domains, typically smaller than
20 kDa in molecular weight, and mostly free of glycosylation or
disulfide bonds that require eukaryotic expression (1). Criti-
cally, they exhibit comparable binding affinities to antibodies
(2). Monobodies based on the fibronectin type 3 domain (FN3)
are a popular scaffold for developing non-antibody therapeu-
tics (2–5). The FN3 domain has an Ig-like fold and thus retains
three of the CDR-like loops of an antibody variable fragment,
but is structurally simple enough to be engineered for
advanced non-antibody functions as the monobody scaffold
(4–7). There are a number of unique monobody derivates in
active development including clinical Adnectins by LIB ther-
apeutics (8) or ViiV Healthcare (9), the stability-enhanced
Centyrins under ARO therapeutics (10, 11) or in a CAR-T
format by Poseida Therapeutics (12), and also the related
TN3 monobodies under Viela Bio (13).

An important consideration in the ability to evolve a
non-antibody scaffold for binding is the combination of a high
initial stability and a mutationally robust framework. The small
size and lack of redundant framework regions in non-antibody
scaffolds result in protein domains that will accumulate only a
few mutations to their variable regions before stability be-
comes compromised (2, 14). Most monobody derivatives
typically lose �40 �C of thermostability upon evolution for
binding (2), which often results in insoluble expression in
bacteria that must be resolved through later rounds of evolu-
tion (15). Critical to the design of next-generation therapeu-
tics, poor biophysical properties such as thermostability and
poor or insoluble expression hinder scaffold “developability”
and correlate to higher risk of failure in during clinical
development (16, 17).

There are multiple approaches of improving the stability of
protein folds (18). Protein stability exists between two critical
thresholds, where a protein is able to fold into a stable, native
three-dimensional shape but is also still dynamic enough to
perform its functions (19, 20). As proteins evolve over time,
the resulting mutations are more likely to be detrimental to
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Robustness in a prestabilized monobody
stability of the native fold than neutral or positive and may
reduce protein stability below the folding threshold (21). This
is often considered as a natural trade-off between stability and
activity and can be a severe limitation to directed evolution
experiments (22, 23). Therefore, as a protein scaffold takes on
mutations to a variable region to improve binding, it is at risk
of deleterious losses in thermostability. Accordingly, proteins
with improved initial thermostability are able to sample a
larger proportion of this destabilizing sequence space as
neutral mutations—they are more mutationally robust—which
in turn increases the chance of reaching novel functions
(24–27). In this way, prestabilization can enhance both
evolvability—the ability of a protein to evolve new functions
(23), and developability—the biophysical likelihood of suc-
cessful development from a lead protein into a therapeutic
drug (17).

From a drug development perspective, the native thermo-
stability of a protein correlates with expression titre and im-
proves critical quality attributes such as shelf-life (16), while
also expanding the range of storage formulations which can be
used in a drug product (28). Biological formulations need to
remain stable for at least 2 years at 5 �C, and storage buffers
are usually applied to reach this target. This has resulted in a
standard set of buffer formulations across industry that are
well-validated and focused on reducing aggregation or other
loss of active protein (29). However, this sole focus on protein
stability limits the exploration of nonstandard formulations,
which benefit other critical quality attributes (28), such as
controlling viscosity or osmolarity to lower the pain associated
with injection (30–32).

Multiple, well-established techniques use phylogenetic in-
formation to derive thermostable homologs for a given protein
family (18, 33–37). Here we have specifically applied consensus
design, which identifies conserved residues within a protein
family that are likely to be stabilizing (34, 37). Previously, we
used consensus design to produce the prestabilized FN3Con
monobody, which has substantially increased thermostability
compared with similar fibronectin domains (38). The muta-
tional robustness of FN3Con was then demonstrated by
grafting binding loops from an FN3 scaffold that had been
selected by laboratory evolution to bind lysozyme with high
affinity (39). Whereas binding function was completely trans-
ferred, the trade-off in thermostability was negligible
compared with that which occurred upon directed evolution of
the original scaffold.

In the current study, we aimed to establish whether
FN3Con can harbor valuable loop sequences that confer
clinical inhibition of a target but were detrimental to stability
in established scaffolds. For this study we chose an Adnectin
domain that was previously subjected to directed evolution
for high-affinity binding to the therapeutic target VEGFR2,
with function gained at the expense of large losses in ther-
mostability and increased oligomerization propensity (40,
41). We grafted binding loops from Adnectin-anti-VEGFR2
onto the FN3Con scaffold to produce a recombined
domain that retained binding affinity. The FN3Con-anti-
VEGFR2 graft was expressed in E. coli with little
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aggregation and maintained characteristically high thermo-
stability, including 24-month stability at 37 �C. An early
exploration of buffer excipients produced further stability
improvements. We discuss the implications of generating
clinical leads by salvaging loop sequences from scaffolds with
challenging biophysical features and the importance of
designing highly “evolvable” constructs on downstream fac-
tors of scaffold “developability.”

Results

Transfer of affinity to a target by sequence grafting

We chose the Adnectin-anti-VEGFR2 monobody “CT-322”
as a candidate for loop grafting to the hyperstable FN3Con in
order to test our hypothesis that a stabilized scaffold can
rescue stability losses accrued after evolutionary selection for
high-affinity binding. This Adnectin was generated from
mRNA display against a construct of seven extracellular do-
mains of VEGFR2 fused with a human antibody Fc region,
generating high-affinity binding (KD = 0.31 nM) but with a
34 �C loss in thermostability (Tm) and also at cost to oligo-
merization resistance (40, 41).

Given the absence of structural information for the binding
mechanism of Adnectin-anti-VEGFR2 to its large multido-
main target, we used previously established loop sequence
boundaries (39) to guide the transfer of evolved binding loops
to FN3Con, designing FN3Con-anti-VEGFR2 [Fig. 1A and B].
Additionally, the entire Adnectin C-terminal tail was reported
to be critical to high-affinity binding and was also transferred
(40).

FN3Con-anti-VEGFR2 displayed high-affinity binding to
VEGFR2 (KD = 0.72 nM) [Table 1], very similar to the pub-
lished affinity of Adnectin-anti-VEGFR2 (KD = 0.31 nM) (41).
We carried out affinity measurement through an orthogonal
approach, where two independent methods provided a KD

range of 0.72 to 48.79 nM [Fig. 1, C and D and Table 1], with
the KD of 0.72 nM derived from Biacore data presenting the
most robust fits to derive underlying equilibrium constants
while controlling for confounding nonspecific binding and
mass transport effects. The ELISA data validated this 2- to 3-
fold difference in affinity between binders, although nonspe-
cific binding likely increased the measured KD for both
monobodies.

Sequence-based grafting stabilizes an anti-VEGFR2 fibronectin

The Adnectin-anti-VEGFR2 undergoes irreversible thermal
denaturation with a Tm of 50 �C ± 0.4 �C, as measured by
circular dichroism (CD), with visible precipitate upon cooling
[Fig. 2A]. In striking contrast, FN3Con-anti-VEGFR2 unfolds
reversibly with a Tm of 89 �C ± 0.2 �C [Fig. 2B]. The Tm of the
Adnectin-anti-VEGFR2 was not previously published (41), but
our results closely match a precursor Adnectin-anti-VEGFR2
variant of similar affinity, thermostability, and loop se-
quences (40). This trajectory of loss in Adnectin thermosta-
bility presents the trade-offs that take place as affinity is further
matured. In contrast, while the FN3Con scaffold loses �10 �C
of thermostability after loop grafting, scaffold stability remains
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Figure 1. A and B, sequence-based grafting between monobody domains with loop sequences from (41). Affinity of FN3Con-anti-VEGFR2 to VEGFR2
was measured using (C) response units during steady-state of association in surface plasmon resonance (SPR), full data in Fig. S1, and (D) a general ELISA
approach.

Robustness in a prestabilized monobody
substantially higher than the parent Adnectin molecules, while
also retaining reversible refolding.

FN3Con-anti-VEGFR2 retains stability and function at 36 �C
for 2 years

We next investigated the effect of FN3Con-anti-VEGFR2
hyperstability on long-term stability (LTS) and binding activ-
ity, as a proxy for extended shelf-life. The Adnectin-anti-
VEGFR2 sample completely aggregates within 1 month’s
storage at 36 �C in PBS [Fig. 2C]. In contrast, the FN3Con-
anti-VEGFR2 remained in solution for at least 24 months,
with �30% of the total sample remaining as a monomer after
2 years storage at 36 �C [Fig. 2D]. Up to 50% of the FN3Con-
anti-VEGFR2 high-order species observed formed between
0 and 6 months at 36 �C, after which oligomer formation
Table 1
Methodology and results for VEGFR2 binding experiments in Figure 1

Protein Surface plasmon reso

Adnectin-anti-VEGFR2 0.31 nMa

FN3Con-anti-VEGFR2 0.72 nM ±0.21
Analysis
Fold Difference 2.32
FN3Con-anti-VEGFR2 Model Fit R2 = 0.95
Immobilized protein VEGFR2
Measure Change in refractive i

a SPR KD from (41), ELISA values are KD ± SE.
stabilized. Accordingly, FN3Con-anti-VEGFR2 presented
extended LTS at 4 �C, remaining as a monomeric protein in
extended trials up to 24 months of storage in PBS buffer
[Fig. 2E]. Strikingly, high-affinity binding (KD �157 nM) to
VEGFR2 was maintained after 24 months at 36 �C [Fig. 2F],
although the observed affinity for the total sample is threefold
lower than “fresh” FN3Con-anti-VEGFR2 (KD �49 nM). This
suggests that only the �30% monomeric fraction retains
binding affinity to the target.

Matching protein thermal stability with formulation stability

Given the results from accelerated stability testing, our final
investigation explored the effect of stabilizing excipients on
further improving the shelf-life properties of the FN3Con-anti-
VEGFR2 construct. After incubation at 40 �C for 30 days with
nance (SPR) KD ELISA KD

16.87 nM ± 4.26
48.79 nM ± 6.78

2.89
R2 = 0.98
VEGFR2

ndex Concentration of Biotinylated protein
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five different buffer excipients (16), size-exclusion chroma-
tography revealed that amino-acid excipients arginine, histi-
dine, glycine, and aspartic acid produced a doubling of
monomeric FN3Con-anti-VEGFR2 sample [Fig. 3]. Excipients
such as Tween80 provide resistance to factors such as hy-
drophobic unfolding from shaking during storage (28, 42), and
was added with no significantly greater detrimental effect on
accelerated thermal stability than with PBS buffer alone.

Discussion

Previously, we have shown that FN3Con is robust to the
stability–function trade-off (39). The data we present here is
consistent with these findings, confirming our hypothesis that
a stabilized scaffold can rescue functional regions from the
stability losses accrued after evolutionary selection for high-
affinity binding. Furthermore, our data confirms that grafting
onto the FN3Con scaffold improves aggregation resistance
over long-term storage. Importantly, we show that the stability
of FN3Con is suitable for loop grafting to generate high-
affinity binders against a clinically relevant target.

The Adnectin-anti-VEGFR2 monobody “CT-322” was the
first of the Adnectin derivative of monobodies to reach clinical
trials (41). Adnectin-anti-VEGFR2 showed potent efficacy with
an antiangiogenic effect in preclinical models of pancreatic
cancer (43), colorectal carcinoma and glioblastoma (41, 44),
brain tumors (45), and Ewing’s sarcoma (46). Phase 1 clinical
studies displayed clinical safety and acceptable pharmacoki-
netics to support phase 2 studies (47), although only some
patients presented stable disease (48).

Unfortunately in phase 2 glioblastoma trials, the Adnectin
derivative did not produce the required efficacy for continua-
tion of studies (48, 49). This was suspected to be caused by a
loss of inhibition effect during translation of this drug from the
preclinical setting to human trials (49), which could result
from pharmacokinetic issues with the Adnectin scaffold.
Related to this could be the emergence of anti-Adnectin an-
tibodies in 31 of 38 patients in the phase 1 study (47, 48). If this
failure of clinical translation is driven by issues of develop-
ability, such as oligomerization, immunogenicity, and phar-
macokinetics, then protein stabilization may salvage a
potentially valuable clinical inhibitor.

An underlying explanation for the biophysical limitations
of Adnectin-anti-VEGFR2 is that the evolution for high-
affinity binding came at a critical cost to stability (Tm

decrease of 30 �C) and oligomerization resistance [Fig. 2C]
(41). The evolution of high-affinity VEGFR2 binding in the
Adnectin scaffold resulted in a step-wise trade-off of ther-
mostability for binding over a range of precursor loop se-
quences [Fig. 4A] (40, 50), including the loss of reversible
refolding evident in the parent FNfn10 scaffold (38, 51).
Despite its clinical failure, recent studies have sought to
improve the Adnectin’s pharmacokinetic properties by
increasing monomer size with a proline–alanine–serine
repeat sequence (PAS-ylation) (52). Our loop grafting study
examined the ability of FN3Con to mimic the targeted
binding of antibodies, supporting the assertion that
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consensus design of FN3Con resulted in a fibronectin
domain that is robust to the mutational load of evolution for
function.

To design FN3Con-anti-VEGFR2, we used available
sequence information from the generation of Adnectin-anti-
VEGFR2. There is a historic body of work related to ratio-
nally grafting CDR loops between antibodies (53). In practice,
this grafting technique involves a balance of transferring res-
idues involved in binding and removing stabilizing residues in
the accepting scaffold (18, 54), which may reveal certain pairs
of donor and recipient scaffolds to be graft-incompatible (39).
The Adnectin-anti-VEGFR2 binding loops were compatible
with the FN3Con scaffold, given the almost-complete transfer
of affinity. This supports the approach that loop grafting to a
more stable scaffold by sequence alone can be an effective
strategy for the initial transfer of affinity between fibronectin-
like domains, followed by focused rounds of redesign (39, 55).

Furthermore, there is growing evidence that monobody
scaffolds can take on valuable loop sequences and their
resulting affinity to clinical targets (56), such as in the transfer
of anti-HER2 CDRs (57) or the anchoring of peptides (58).
However, it is unclear how much of the previously published
antibody CDR loop sequences can be transferred to monobody
domains, especially if it is a complicated process that involves
iterative redesign (55). Additionally, if there are already
established antibodies in the clinic, then there may be little
need for an antibody mimic, unless they can provide mean-
ingful advantages such as short half-life for radiolabeled im-
aging (5, 59, 60). Nevertheless, it may be more efficient instead
to evolve new binding loops de novo with display technologies
(61, 62). If the FN3Con scaffold is hyperstable against
destructive anti-VEGFR2 binding loops, it may be robust to
directed evolution for aspects such as even greater affinity or
the addition of a second binding surface.

In terms of biophysical properties generally considered
under the concept of “developability” (16), FN3Con-anti-
VEGFR2 initially presented improved features over the
Adnectin in terms of thermal stability and high-yield, soluble
bacterial expression (not shown). The improved thermal sta-
bility of this construct then led to favorable features of accel-
erated stability (AS) [Fig. 4B]. Although it is unclear whether
higher-order species in the 2 years AS sample occurred due to
self-association or to disulfide bonding between monomers as
BME became inactive (63), the reduction in binding affinity to
VEGFR2 matched the loss of monomer in the sample. As a
result, in this investigation we see the flow-on effects from the
focus on thermostability alone to a broader set of biophysical
features and a link between the concepts of evolvability (27,
64) and developability (16).

Similar to our protein design approach, the purposes of
excipient design for stabilization are to either reduce deviation
from the native protein conformation or protect that state
from collision with other molecules (65, 66). As there is a body
of evidence around the interaction of salts negatively destabi-
lizing FN3 proteins (67), we explored excipients that com-
plement the enhanced protein stability of FN3Con.
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Figure 2. Circular dichroism (CD) thermal melts of (A) Adnectin-anti-VEGFR2 (Tm of 50 �C ± 0.4 �C) and (B) FN3Con-anti-VEGFR2 (Tm of 89 �C ±
0.2 �C), a reverse melt (blue) indicates reversible refolding in FN3Con-anti-VEGFR2. C, the Adnectin-anti-VEGFR2 sample aggregates completely over
1 month at 36 �C. D, more than 1/3 of FN3Con-anti-VEGFR2 sample is still present as a monomer after 2 years of 36 �C storage, with the remaining 2/3
present as higher-order oligomers. E, the graft also shows limited aggregation during 4 �C storage. F, ELISA of the 36 �C 24-month sample shows a matching
threefold loss in affinity (KD of 49–157 nM).

Robustness in a prestabilized monobody
In this study, accelerated stability trials confirmed the
protective effect of amino acid excipients (29), as the addi-
tion of arginine, glycine, aspartic acid, and histidine doubled
the amount of monomeric FN3Con-anti-VEGFR2 in accel-
erated conditions. The dominant stability improvement of
arginine over glycine [Fig. 3] could be due to the complex
interaction of the arginine guanidinium group (68), which
suppresses protein unfolding by increasing the energy bar-
rier between folded native-state and aggregation-prone in-
termediates (69, 70). This can be seen as a further extension
J. Biol. Chem. (2021) 296 100447 5



Figure 3. SEC elution profiles of FN3Con-anti-VEGFR2 after accelerated
stability trials with a range of buffer excipients. All amino acid buffers
slowed the loss of monomer. However, dimers appear at a similar rate
between all samples, which could be linked to the generation of disulfide-
bonded dimers due to degradation of BME. Tween80 was not significantly
more destabilizing to the monomer than PBS buffer alone.

Robustness in a prestabilized monobody
of the consensus protein design approach, which initially
“smoothed out” this folding landscape and slowed the rate of
unfolding in the native FN3Con conformation (38, 71).
Histidine also provided improved resistance to thermal ag-
gregation, and its effect is well-explored in industry formu-
lations (72).

Generating highly stable biological scaffolds provides
greater freedom to use nonstandard buffer formulations. As
biological therapeutics must display a 5 �C shelf-life of up to
2 years, storage buffers are often designed with an aim of
protection from aggregation or chemical modification of the
protein (28). With hyperstability built into a protein scaffold,
formulation scientists can instead focus on excipients that
optimize function (66), such as for particulate drug delivery
depots that overcome the short pharmacokinetic half-life of
these small protein scaffolds, for freeze-dried and aerosolized
suspensions, or in antimicrobial preservatives for long-term
shelf-stable formulations.

These formulation experiments are important for designing
differentiated applications from the dominant antibody scaf-
fold, where the FN3Con domain may instead find its place in
niche applications (5). The improved thermostability of the
FN3Con monobody could allow for greater control over self-
association intermediates in order to create novel drug mo-
dalities (5). Furthermore, our demonstration of stability and
activity over 1 to 2 years supports the use of consensus-
designed monobodies in diagnostic settings that cannot uti-
lize cold-chain distribution, such as field applications of
microfluidic devices (73).

Overall, the results of this study show the flow-on effects of
prestabilizing a protein scaffold, from a greater robustness to
evolutionary mutations, improved biophysical properties for
clinical development, and potentially enabling a greater range
of biomedical applications.
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Conclusions

The initial aims of this study were to examine whether the
engineering for hyperstability in FN3Con allowed for
improved “evolvability” of clinical function in this hyperstable
monobody derivative compared with other scaffolds that are
progressing through the clinic. The complete transfer of af-
finity to a target was successful through sequence-based
grafting alone, and the 40 �C increase in thermostability be-
tween monobody scaffolds suggests that the FN3Con scaffold
is amenable to taking on affinity to a therapeutic target.
Further to these aims, the connection of high thermal stability
to biophysical aspects of “developability” was investigated. LTS
trials show an active monomeric fraction after 2 years at 36 �C,
and accelerated stability trials in a range of standard excipients
show that there is much room for improvement in extension of
that shelf-life. These are promising results for continuing
development of the FN3Con scaffold. In future, critical in-
vestigations will need to utilize these advanced biophysical
features to create novel constructs that provide differentiated
patient benefit such as the evolution of multiple paratopes or
in shelf-stable applications.

Experimental procedures

Protein expression and purification

Genes encoding Adnectin-anti-VEGFR2 and FN3Con-
anti-VEGFR2 were chemically synthesized and provided in
a pD444-CH (C-terminal 6x His tag, ampicillin resistance)
vector by DNA2.0. The resulting plasmids were transformed
into competent C41 E. coli cells for expression. A single
colony from each transformation was picked and grown
overnight at 37 �C in 100 ml of 2xYT (16.0 g/l tryptone,
10.0 g/l yeast extract, 5.0 g/l NaCl) media containing 100 μg/
ml of ampicillin. These cultures were then used to seed 1 l of
2xYT media. Cultures were induced at an OD600 of 0.9 with
IPTG (0.5 mM final concentration) and grown for a further
4 h at 37 �C. The cells were harvested by centrifugation.
Adnectin-anti-VEGFR2 and FN3Con-anti-VEGFR2 had
their cell pellets resuspended in 5 ml/g of native lysis buffer
(50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, pH 8.0)
and were lysed by sonication. Cell debris was removed by
centrifugation and incubated in lysis buffer +40 mM beta-
mercaptoethanol to reduce disulfide bonds. Recombinant
protein was then isolated from the supernatant by nickel
affinity chromatography using loose Ni-NTA resin (Sigma).
Protein eluted from Ni-NTA resin was filtered and then
loaded onto a size-exclusion column (Superdex 75 16/60, GE
Healthcare) equilibrated in PBS (140 mM NaCl, 2.7 mM KCl,
10 mM PO4

3−, 4 mM beta-mercaptoethanol pH 7.4) for
biophysical characterization. Protein concentration was
determined by Nanodrop ND-1000 (Thermo Fisher), and
protein was stored at 4 �C until use.

Biotin conjugation of proteins

Biotin was conjugated to lysines, which are on the
nonbinding loops of FN3Con-anti-VEGFR2 and Adnectin-
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anti-VEGFR2, to improve sensitivity and loading in ELISA or
BLItz binding assays (EZ-Link Sulfo-NHS-LC-Biotinylation
Kit, Thermo Fisher 21435).
Binding studies

SPR

The binding affinity of FN3Con-anti-VEGFR2 was
measured using surface plasmon resonance with a 30 μl/min
flow rate at 25 �C (BIAcore T-100, GE Healthcare). VEGFR2
domains (Sino Biological, 10012-H08H) were conjugated on
a CM5 sensor chip through NHS/EDC activation and
ethanolamine deactivation. HBS-EP (10 mM HEPES,
150 mM NaCl, 0.005% (v/v) Tween 20, 0.1% BSA pH 7.4)
was used as the running buffer, and FN3Con-anti-VEGFR2
was prepared in serial dilutions of HBS-EP. Multicycle ki-
netics were performed with 240 s association of FN3Con-
anti-VEGFR2 and 800 s dissociation with blank HBS-EP
buffer, followed by regeneration of the surface (30 s
Glycine-HCl pH 1.5 followed by a 150 s stabilization period,
then 30 s NaOH pH 10 followed by a 300 s stabilization
period).
ELISA

96-well plates were coated overnight with 10 μg/ml
VEGFR2, shaking at 4 �C. Wells were washed with PBS and
blocked with milk blocking solution (5% powdered milk in
J. Biol. Chem. (2021) 296 100447 7
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PBS-T) for 2 h. Wells were washed again and incubated with
biotinylated anti-VEGFR2 proteins for 1 h before washing and
incubation with antibiotin HRP solution for another hour.
After a final wash, TMB was added to wells and left to incubate
for up to 30 min. Fluorescence at 415 to 450 nm was read by a
plate reader for each well.

Binding calculations

High nonspecific binding was a limiting factor in the anal-
ysis of affinity especially when attempting to determine kinetic
constants that were compromised also by a large component
of mass transport during association and ligand rebinding
during dissociation. Consequently, the steady-state value for
association of each FN3Con-anti-VEGFR2 concentration was
determined at 190 s after injection, and a KD was calculated
using a plot of RU values at this point as a function of con-
centration with GraphPad Prism and a simple Langmuir type
fit (Y = Bmax*X/(Kd + X) + NS*X + Background, where Y is
the RU, X is the concentration in nM, and Background is
constrained to 0).

The ELISA data was also limited by nonspecific binding;
however, the aim of this experiment was to provide a com-
parison between Adnectin-anti-VEGFR2 and FN3Con-anti-
VEGFR2. ELISA data was plotted in GraphPad Prism, and a
one-site binding (hyperbola) model (Y= (Bmax *X)/(Kd + X))
was applied to calculate the KD as the midpoint of signal in-
crease, this was presented as KD alongside the R2 measure of
fit. The Biacore analysis was presented as the most represen-
tative estimation of affinity, as the steady-state approach
allowed for better understanding of the effect of nonspecific
binding.

Thermal stability

Thermal stability of purified Adnectin-anti-VEGFR2 and
FN3Con-anti-VEGFR2 was measured by circular dichroism
(CD). CD measurements were performed using a Jasco 815
spectropolarimeter with 0.2 mg/ml protein in PBS used in a
0.1 cm path-length quartz cuvette. Thermal denaturation was
measured by observing signal changes at 222 nm during
heating at a rate of 1 �C/min. The melting temperature (Tm)
was obtained by fitting to a sigmoidal dose–response (variable
slope) equation (Y = Bottom + (Top-Bottom)/(1 + exp((V50-
X)/Slope))).

Long-term stability (LTS)

LTS was measured by diluting purified protein to 1 mg/ml
in PBS + 2 mM beta-mercaptoethanol pH 7.4, then storing in
1.7 ml Eppendorf tube in a temperature-controlled rooms at
4 �C, 21 �C and 36 �C. Stability was investigated as the size of
monomer peak on a size-exclusion column (Superdex 75
16/60, GE Healthcare) after injection of 100 μl volumes,
0.2 μm filtered, from each temperature fraction at 3, 6, 12, 22,
and 24 months of storage. Peak areas were integrated by GE
Unicorn software and percentages calculated from individual
peak area divided by total area under the curve.
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Accelerated stability

Accelerated stability was measured by diluting purified
protein to 1 mg/ml in 2 mM Beta-mercaptoethanol pH 7.4
with 62.4 mM of glycine, histidine, aspartic Acid, arginine
amino acids, or Tween80, then storing in 1.7 ml Eppendorf
tube in a heat block at 40 �C for 30 days. Stability was inves-
tigated as the size of monomer peak on a size-exclusion col-
umn (Superdex 75 16/60, GE Healthcare) from injection of
500 μl volumes, 0.2 μm filtered, from each sample.
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